Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Using conditional probability, it is found that there is a 0.035 = 3.5% probability that a hospital patient has both Medicare and Medicaid.
What is Conditional Probability?
- Conditional probability is the probability of one event happening, considering a previous event. The formula is:
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]
In which
- P(B|A) is the probability of event B happening, given that A happened.
- [tex]P(A \cap B)[/tex] is the probability of both A and B happening.
- P(A) is the probability of A happening.
In this problem, the events are:
- Event A: Patient has Medicare.
- Event B: Patient has Medicaid.
For the probabilities, we have that:
- 35% of the patients have Medicare, hence [tex]P(A) = 0.35[/tex].
- Of those who have Medicare, there is a 10% chance they also have Medicaid, hence [tex]P(B|A) = 0.1[/tex].
Then, applying the conditional probability:
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]
[tex]0.1 = \frac{P(A \cap B)}{0.35}[/tex]
[tex]P(A \cap B) = 0.35(0.1)[/tex]
[tex]P(A \cap B) = 0.035[/tex]
0.035 = 3.5% probability that a hospital patient has both Medicare and Medicaid.
You can learn more about conditional probability at https://brainly.com/question/14398287
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.