Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Using conditional probability, it is found that there is a 0.035 = 3.5% probability that a hospital patient has both Medicare and Medicaid.
What is Conditional Probability?
- Conditional probability is the probability of one event happening, considering a previous event. The formula is:
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]
In which
- P(B|A) is the probability of event B happening, given that A happened.
- [tex]P(A \cap B)[/tex] is the probability of both A and B happening.
- P(A) is the probability of A happening.
In this problem, the events are:
- Event A: Patient has Medicare.
- Event B: Patient has Medicaid.
For the probabilities, we have that:
- 35% of the patients have Medicare, hence [tex]P(A) = 0.35[/tex].
- Of those who have Medicare, there is a 10% chance they also have Medicaid, hence [tex]P(B|A) = 0.1[/tex].
Then, applying the conditional probability:
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]
[tex]0.1 = \frac{P(A \cap B)}{0.35}[/tex]
[tex]P(A \cap B) = 0.35(0.1)[/tex]
[tex]P(A \cap B) = 0.035[/tex]
0.035 = 3.5% probability that a hospital patient has both Medicare and Medicaid.
You can learn more about conditional probability at https://brainly.com/question/14398287
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.