Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Using Venn probabilities, it is found that 240 students are enrolled in both classes.
Venn probabilities:
The events are:
- Event A: A student is enrolled in band.
- Event B: A student is enrolled in chorus.
The supposed percentages, which also represents the probabilities involving a single student, are:
- 50% of the students involved in the band, hence [tex]P(A) = 0.5[/tex].
- 40% of the students involved in the chorus, hence [tex]P(B) = 0.4[/tex].
- 30% involved in neither, hence [tex]1 - P(A \cup B) = 0.3 \rightarrow P(A \cup B) = 0.7[/tex].
The percentage involved in both is:
[tex]P(A \cap B) = P(A) + P(B) - P(A \cup B)[/tex]
Hence:
[tex]P(A \cap B) = 0.5 + 0.4 - 0.7 = 0.2[/tex]
Then, out of 1200 students:
[tex]0.2(1200) = 240[/tex]
240 students are enrolled in both classes.
To learn more about Venn probabilities, you can take a look at https://brainly.com/question/25698611
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.