Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

What are the domain and the range of function ? f(x)=x-6/x^2-3x-18​

Sagot :

Answer:The domain of the function is x ∈ R − { − 3 } . The range is y ∈ R − { 1 } Explanation: Factorise the numerator and denominator y = x 2 − 5 x − 6 x 2 − 3 x − 18 = ( x + 1 ) x − 6 ( x + 3 ) x − 6 = x + 1 x + 3 The denominator is ≠ 0 , therefore x + 3 ≠ 0 , ⇒ , x ≠ − 3 The domain of the function is x in RR-{-3} To determine the range, proceed as follows y = x + 1 x + 3 y ( x + 3 ) = x + 1 y x − x = 1 − 3 y x ( y − 1 ) = 1 − 3 y x = 1 − 3 y y − 1 The denominator is ≠ 0 y − 1 ≠ 0 , ⇒ , y ≠ 1 The range is y ∈ R − { 1 } graph{(x^2-5x-6)/(x^2-3x-18) [-16.02, 16.02, -8.01, 8.01]}

Step-by-step Explanation: Factorise the numerator and denominator y = x 2 − 5 x − 6 x 2 − 3 x − 18 = ( x + 1 ) x − 6 ( x + 3 ) x − 6 = x + 1 x + 3 The denominator is ≠ 0 , therefore x + 3 ≠ 0 , ⇒ , x ≠ − 3 The domain of the function is x in RR-{-3} To determine the range, proceed as follows y = x + 1 x + 3 y ( x + 3 ) = x + 1 y x − x = 1 − 3 y x ( y − 1 ) = 1 − 3 y x = 1 − 3 y y − 1

We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.