Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Refer to this previous solution set
https://brainly.com/question/26114608
===========================================================
Problem 4
Like the three earlier problems, we'll place the kicker at the origin and have her kick to the right. The two roots in this case are x = 0 and x = 20 to represent when the ball is on the ground.
This leads to the factors x and x-20 and the equation [tex]y = ax(x-20)[/tex]
We'll plug in (x,y) = (10,28) which is the vertex point. The 10 is the midpoint of 0 and 20 mentioned earlier.
Let's solve for 'a'.
[tex]y = ax(x-20)\\\\28 = a*10(10-20)\\\\28 = -100a\\\\a = -\frac{28}{100}\\\\a = -\frac{7}{25}\\\\[/tex]
This then leads us to:
[tex]y = ax(x-20)\\\\y = -\frac{7}{25}x(x-20)\\\\y = -\frac{7}{25}x*x-\frac{7}{25}x*(-20)\\\\y = -\frac{7}{25}x^2+\frac{28}{5}x\\\\[/tex]
The equation is in the form [tex]y = ax^2+bx+c[/tex] with [tex]a = -\frac{7}{25}, \ b = \frac{28}{5}, \ c = 0[/tex]
The graph is below in blue.
===========================================================
Problem 5
The same set up applies as before.
This time we have the roots x = 0 and x = 100 to lead to the factors x and x-100. We have the equation [tex]y = ax(x-100)[/tex]
We'll use the vertex point (50,12) to find 'a'.
[tex]y = ax(x-100)\\\\12 = a*50(50-100)\\\\12 = -2500a\\\\a = -\frac{12}{2500}\\\\a = -\frac{3}{625}\\\\[/tex]
Then we can find the standard form
[tex]y = ax(x-100)\\\\y = -\frac{3}{625}x(x-100)\\\\y = -\frac{3}{625}x*x-\frac{3}{625}x*(-100)\\\\y = -\frac{3}{625}x^2+\frac{12}{25}x\\\\[/tex]
The graph is below in red.

Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.