Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
keeping in mind that perpendicular lines have negative reciprocal slopes, let's check for the slope of the equation above
[tex]5x+8y=-9\implies 8y=-5x-9\implies y=\cfrac{-5x-9}{8} \\\\\\ y=\stackrel{\stackrel{m}{\downarrow }}{-\cfrac{5}{8}} x-9\qquad \impliedby \begin{array}{|c|ll} \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array}[/tex]
well then, so since this equation has that slope therefore
[tex]\stackrel{\textit{perpendicular lines have \underline{negative reciprocal} slopes}} {\stackrel{slope}{\cfrac{-5}{8}} ~\hfill \stackrel{reciprocal}{\cfrac{8}{-5}} ~\hfill \stackrel{negative~reciprocal}{-\cfrac{8}{-5}\implies \cfrac{8}{5}}}[/tex]
so we're really looking for the equation of a line whose slope is 8/5 and runs through (10,10)
[tex](\stackrel{x_1}{10}~,~\stackrel{y_1}{10}) ~\hspace{10em} \stackrel{slope}{m}\implies \cfrac{8}{5} \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{10}=\stackrel{m}{\cfrac{8}{5}}(x-\stackrel{x_1}{10})[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.