Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Answers:
- Congruent by SSS
- Congruent by SAS
- Not congruent (or not enough info to know either way)
- Congruent by SAS
- Congruent by SSS
- Not congruent (or not enough info to know either way)
- Congruent by SAS
- Congruent by SAS
==================================
Explanations:
- We have 3 pairs of congruent sides. The tickmarks tell us how the congruent sides pair up (eg: the double tickmarked sides are the same length). So that lets us use SSS. The shared overlapping side forms the third pair of congruent sides.
- We have two pairs of congruent sides (the tickmarked sides and the overlapping sides), and an angle between the sides mentioned. Therefore, we can use SAS to prove the triangles congruent.
- We don't have enough info here. So the triangles might be congruent, or they might not be. The convention is to go with "not congruent" until we have enough evidence to prove otherwise.
- We can use SAS like with problem 2. Vertical angles are always congruent.
- This is similar to problem 1, so we can use SSS here.
- There isn't enough info, so it's pretty much a repeat of problem 3
- Same idea as problem 4.
- Similar to problem 2. We have two pairs of congruent sides and an included angle between them allowing us to use SAS
The abbreviations used were:
- SSS = side side side
- SAS = side angle side
The order is important with SAS because the angle needs to be between the sides mentioned.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.