Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Find the indicated probability.
An archer is able to hit the bull's-eye 53% of the time. If the archer shoots 10 arrows, what is the probability they get exactly 4 bull's-eyes? Assume each shot is independent of the others.
0.0789
0.0905
0.179
0.821


Sagot :

Answer:

C) 0.179

Step-by-step explanation:

Since the trials are independent, this is a binomial distribution:

Recall:

  • Binomial Distribution --> [tex]P(k)={n\choose k}p^kq^{n-k}[/tex]
  • [tex]P(k)[/tex] denotes the probability of [tex]k[/tex] successes in [tex]n[/tex] independent trials
  • [tex]p^k[/tex] denotes the probability of success on each of [tex]k[/tex] trials
  • [tex]q^{n-k}[/tex] denotes the probability of failure on the remaining [tex]n-k[/tex] trials
  • [tex]{n\choose k}=\frac{n!}{(n-k)!k!}[/tex] denotes all possible ways to choose [tex]k[/tex] things out of [tex]n[/tex] things

Given:

  • [tex]n=10[/tex]
  • [tex]k=4[/tex]
  • [tex]p^k=0.53^4[/tex]
  • [tex]q^{n-k}=(1-0.53)^{10-4}=0.47^6[/tex]
  • [tex]{n\choose k}={10\choose 4}=\frac{10!}{(10-4)!4!}=210[/tex]

Calculate:

  • [tex]P(4)=(210)(0.53^4)(0.47^6)=0.1786117069\approx0.179[/tex]

Therefore, the probability that the archer will get exactly 4 bull's-eyes with 10 arrows in any order is 0.179

We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.