At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Answer:
Firstly, from the diagram we are given that the length of XB is congruent to BZ, and YC is congruent to CZ. Based on this information, we know that B is the midpoint of XZ, and C is the midpoint of YZ. This means that BC connects the midpoints of segments XZ and YZ. Now that we know this, we can use the Triangle Midsegment Theorem to calculate the length of BC. This theorem states that if a segment connects the midpoints of two sides of a triangle, then the segment is equal to one-half the length of the third side. In this scenario, the third side would be XY, which has a length of 12 units. Therefore, the length of BC = 1/2(XY), and we can substitute the value of XY and solve this equation:
BC = 1/2(XY)
BC = 1/2(12)
BC = 6
Step-by-step explanation:
Please support my answer.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.