Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
Firstly, from the diagram we are given that the length of XB is congruent to BZ, and YC is congruent to CZ. Based on this information, we know that B is the midpoint of XZ, and C is the midpoint of YZ. This means that BC connects the midpoints of segments XZ and YZ. Now that we know this, we can use the Triangle Midsegment Theorem to calculate the length of BC. This theorem states that if a segment connects the midpoints of two sides of a triangle, then the segment is equal to one-half the length of the third side. In this scenario, the third side would be XY, which has a length of 12 units. Therefore, the length of BC = 1/2(XY), and we can substitute the value of XY and solve this equation:
BC = 1/2(XY)
BC = 1/2(12)
BC = 6
Step-by-step explanation:
Please support my answer.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.