Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
The value of the sine of the sum of angles [tex]\theta[/tex] and [tex]\phi[/tex] is [tex]\frac{44}{125}[/tex].
Procedure - Determine of the sine of a sum of angles based on two trigonometric expressions and quadrants.
By trigonometry we know that the sine of a sum of angles is defined by the following formula:
[tex]\sin (\theta + \phi) = \sin \theta \cdot \cos \phi + \cos \theta \cdot \sin \phi[/tex] (1)
In addition we know that sine is positive in the second quadrant and cosine is negative in the second and third quadrants. Besides, tangent is negative in the second quadrant.
By definitions of sine, cosine and tangent we have the following expressions:
[tex]\sin \alpha = \frac{y}{\sqrt{x^{2}+y^{2}}}[/tex] (2)
[tex]\cos \alpha = \frac{x}{\sqrt{x^{2}+y^{2}}}[/tex] (3)
[tex]\tan \alpha = \frac{y}{x}[/tex] (4)
Determination of the sine of the sum of angles
(θ: [tex]x = -4, y = -3[/tex], φ: [tex]x: -24[/tex], [tex]y = 7[/tex])
By (2) we have the following result:
[tex]\sin (\theta + \phi) = \left(-\frac{3}{5} \right)\cdot \left(-\frac{24}{25} \right)+\left(-\frac{4}{5} \right)\cdot \left(\frac{7}{25} \right)[/tex]
[tex]\sin (\theta + \phi) = \frac{44}{125}[/tex]
The value of the sine of the sum of angles [tex]\theta[/tex] and [tex]\phi[/tex] is [tex]\frac{44}{125}[/tex]. [tex]\blacksquare[/tex]
To learn more on trigonometric formulas, we kindly invite to check this verified question: https://brainly.com/question/6904750
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.