At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
bearing in mind that complex roots never come all by their lonesome, their sister is always with them, their conjugate, so if we have a root of 2i or 0 + 2i, its conjugate is also there or namely 0 - 2i, or just -2i.
[tex]\begin{cases} x=3\implies &x-3=0\\ x=4\implies &x-4=0\\ x=2i\implies &x-2i=0\\ x=-2i\implies &x+2i=0 \end{cases}\implies (x-3)(x-4)(x-2i)(x+2i)=\stackrel{y}{0} \\\\[-0.35em] ~\dotfill\\\\ \underset{\textit{difference of squares}}{(x-2i)(x+2i)}\implies [(x)^2-(2i)^2]\implies [x^2-(2^2i^2)]\implies [x^2-[4(-1)]] \\\\\\ x^2-(-4)\implies x^2+4 \\\\[-0.35em] ~\dotfill\\\\ (x-3)(x-4)(x^2+4)=0\implies \stackrel{F~O~I~L}{(x^2-7x+12)}(x^2+4)=0 \\\\\\ x^4-7x^3+12x^2+4x^2-28x+48=0\implies x^4-7x^3+16x^2-28x+48=y[/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.