Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Consider the quadratic function f(x)= 9x^2+30x+25=0

Part a: find a value of the discriminant for the function.

A) 3
B) 6
C) 25
D) 0


Consider The Quadratic Function Fx 9x230x250 Part A Find A Value Of The Discriminant For The Function A 3 B 6 C 25 D 0 class=

Sagot :

Answer:

D) 0

There is 1 real solution.

Step-by-step explanation:

Hi there!

[tex]f(x)= 9x^2+30x+25=0[/tex]

This is written in standard form:

[tex]f(x)=ax^2+bx+c[/tex]

This means:

a=9

b=30

c=25

The discriminant states:

[tex]D=b^2-4ac[/tex]

If D>0, there are 2 real solutions.

If D=0, there is 1 real solution.

If D<0, there are 2 complex solutions.

Plug in the values:

[tex]D=30^2-4(9)(25)\\D=0[/tex]

Therefore, there is 1 real solution.

I hope this helps!