Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Please show full solutions! WIll Mark Brainliest for the best answer.

SERIOUS ANSWERS ONLY


Please Show Full Solutions WIll Mark Brainliest For The Best Answer SERIOUS ANSWERS ONLY class=

Sagot :

Answer:

  • vertical scaling by a factor of 1/3 (compression)
  • reflection over the y-axis
  • horizontal scaling by a factor of 3 (expansion)
  • translation left 1 unit
  • translation up 3 units

Step-by-step explanation:

These are the transformations of interest:

  g(x) = k·f(x) . . . . . vertical scaling (expansion) by a factor of k

  g(x) = f(x) +k . . . . vertical translation by k units (upward)

  g(x) = f(x/k) . . . . . horizontal expansion by a factor of k. When k < 0, the function is also reflected over the y-axis

  g(x) = f(x-k) . . . . . horizontal translation to the right by k units

__

Here, we have ...

  g(x) = 1/3f(-1/3(x+1)) +3

The vertical and horizontal transformations can be applied in either order, since neither affects the other. If we work left-to-right through the expression for g(x), we can see these transformations have been applied:

  • vertical scaling by a factor of 1/3 (compression) . . . 1/3f(x)
  • reflection over the y-axis . . . 1/3f(-x)
  • horizontal scaling by a factor of 3 (expansion) . . . 1/3f(-1/3x)
  • translation left 1 unit . . . 1/3f(-1/3(x+1))
  • translation up 3 units . . . 1/3f(-1/3(x+1)) +3

_____

Additional comment

The "working" is a matter of matching the form of g(x) to the forms of the different transformations. It is a pattern-matching problem.

The horizontal transformations could also be described as ...

  • translation right 1/3 unit . . . f(x -1/3)
  • reflection over y and expansion by a factor of 3 . . . f(-1/3x -1/3)

The initial translation in this scenario would be reflected to a translation left 1/3 unit, then the horizontal expansion would turn that into a translation left 1 unit, as described above. Order matters.

View image sqdancefan
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.