Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Please show full solutions! WIll Mark Brainliest for the best answer. THANK YOU!

SERIOUS ANSWERS ONLY!!!


Please Show Full Solutions WIll Mark Brainliest For The Best Answer THANK YOU SERIOUS ANSWERS ONLY class=

Sagot :

Note that each of the bases here are powers of 3:

3¹ = 3

3² = 9

3³ = 27

3⁴ = 81

3⁵ = 243

So the given equations can be rewritten as

[tex]\dfrac{81^{x+2y}}{27^{x-y}} = \dfrac{\left(3^4\right)^{x+2y}}{\left(3^3\right)^{x-y}} = \dfrac{3^{4x+8y}}{3^{3x-3y}} = 3^{x+11y} = 3^5[/tex]

and

[tex]\dfrac{243^{x+3y}}{81^{x+2y}} = \dfrac{\left(3^5\right)^{x+3y}}{\left(3^4\right)^{x+2y}} = \dfrac{3^{5x+15y}}{3^{4x+8y}} = 3^{x+7y} = 3^{-3}[/tex]

The bases on either side are the same, so the exponents must match and

x + 11y = 5

x + 7y = -3

Solve for x and y. Eliminate x and solve for y :

(x + 11y) - (x + 7y) = 5 - (-3)

(x - x) + (11y - 7y) = 5 + 3

4y = 8

y = 2

Solve for x :

x + 11•2 = 5

x + 22 = 5

x = -17