At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Answer:
Look below
Step-by-step explanation:
The mean of the sampling distribution always equals the mean of the population.
μxˉ=μ
The standard deviation of the sampling distribution is σ/√n, where n is the sample size
σxˉ=σ/n
When a variable in a population is normally distributed, the sampling distribution of for all possible samples of size n is also normally distributed.
If the population is N ( µ, σ) then the sample means distribution is N ( µ, σ/ √ n).
Central Limit Theorem: When randomly sampling from any population with mean µ and standard deviation σ, when n is large enough, the sampling distribution of is approximately normal: ~ N ( µ, σ/ √ n ).
How large a sample size?
It depends on the population distribution. More observations are required if the population distribution is far from normal.
A sample size of 25 is generally enough to obtain a normal sampling distribution from a strong skewness or even mild outliers.
A sample size of 40 will typically be good enough to overcome extreme skewness and outliers.
In many cases, n = 25 isn’t a huge sample. Thus, even for strange population distributions we can assume a normal sampling distribution of the mean and work with it to solve problems.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.