Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Lydia graphed ADEF at the coordinates D (-2,-1), E (-2, 2), and F (0,0). She thinks ADEF is a right triangle. Is Lydia's assertion correct?
A) Yes, the slopes of EF and DF are opposite reciprocals.
B) Yes, the slopes of EF and DF are the same.
C) No, the slopes of EF and DF are not opposite reciprocals.
D) No, the slopes of EF and DF are not the same.​


Sagot :

The true statement is (c) No; the slopes of segment EF and segment DF are not opposite reciprocals.

Right triangles

Right triangles have a pair of perpendicular lines

Coordinates

The coordinates are given as:

  • D = (-2,-1)
  • E = (-2,2)
  • F = (0,0)

Slopes

Start by calculating the slopes of lines DF and EF using:

[tex]m = \frac{y_2 -y_1}{x_2 -x_1}[/tex]

So, we have:

[tex]m_{DF} = \frac{0 + 1}{0 +2}[/tex]

[tex]m_{DF} = \frac{1}{2}[/tex]

Also, we have:

[tex]m_{EF} = \frac{0 -2 }{0+2}[/tex]

[tex]m_{EF} = \frac{-2 }{2}[/tex]

[tex]m_{EF} = -1[/tex]

For the triangle to be a right triangle, then the calculated slopes must be opposite reciprocals.

i.e.

[tex]m_1 = -\frac{1}{m_2}[/tex]

By comparison, the slopes of both lines are not opposite reciprocals.

Hence, the true statement is (c)

Read more about right triangles at:

https://brainly.com/question/17972372

Answer:

c

Step-by-step explanation:

We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.