Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
Vertex: (2, 3).
Step-by-step explanation:
Definition of terms:
The general form of an absolute function is given by: y = a|x - h| + k, where:
| a | ⇒ Determines the vertical stretch or compression factor of the function.
(h, k) ⇒ Coordinates of the vertex, which is either the minimum or maximum point on the graph.
x = h ⇒ Axis of symmetry, which is the imaginary vertical line that splits the graph of the function into two symmetrical parts.
Explanation"
Given the absolute value function, y = |x - 2| + 3:
Based on the general form of absolute value functions described in the previous section of this post, y = a|x - h| + k:
We can assume that the value of "a" in the given absolute value function is 1, because if we distribute 1 into the terms inside the bars, "| |," the constant value of a = 1 will not change the value of those terms.
- However, there are other instances where there is a given value for "a," which could either "stretch" or "compress" the graph of the absolute value function. If the value of | a | > 1, then it represents the vertical stretch (the graph appears narrower than the parent graph of the absolute value function). In contrast, if the the value of "a" is 0 < | a | < 1, then it represents a vertical compression (the graph appears wider than the parent graph of the absolute value function).
In terms of the vertex, it occurs at point, (2, 3), where h = 2, and k = 3.
Therefore, the vertex of the given absolute value function is (2, 3).
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.