Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Explanation:
First, we need to find the values of the sine and cosine of x knowing the value of tan x and x being in the 3rd quadrant. Since tan x = 5/12, using Pythagorean theorem, we know that
[tex]\sin x = -\frac{5}{13}\;\;\text{and}\;\;\cos x = -\frac{12}{13}[/tex]
Note that both sine and cosine are negative because x is in the 3rd quadrant.
Recall the addition identities listed below:
[tex]\sin(\alpha + \beta) = \sin\alpha\sin\beta + \cos\alpha\cos\beta[/tex]
[tex]\Rightarrow \sin(180+x) = \sin180\sin x + \cos180\cos x[/tex]
[tex]\;\;\;\;\;\;= -\sin x = \dfrac{5}{13}[/tex]
[tex]\cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta[/tex]
[tex]\Rightarrow \cos(180 - x) = \cos180\cos x + \sin180\sin x[/tex]
[tex]\;\;\;\;\;\;=-\cos x = \dfrac{12}{13}[/tex]
[tex]\tan(\alpha - \beta) = \dfrac{\tan\alpha - \tan\beta}{1 + \tan\alpha\tan\beta}[/tex]
[tex]\Rightarrow \tan(360 - x) = \dfrac{\tan 360 - \tan x}{1 + \tan 360 \tan x}[/tex]
[tex]\;\;\;\;\;\;= -\tan x = -\dfrac{5}{12}[/tex]
Therefore, the expression reduces to
[tex]\sin(180+x) + \tan(360-x) + \frac{1}{\cos(180-x)}[/tex]
[tex]\;\;\;\;\;= \left(\dfrac{5}{13}\right) + \left(\dfrac{5}{12}\right) + \dfrac{1}{\left(\frac{12}{13}\right)}[/tex]
[tex]\;\;\;\;\;= \dfrac{49}{26}[/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.