Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Answer:
Assuming that air resistance is negligible.
a. Approximately [tex]16.1\; {\rm m\cdot s^{-1}}[/tex].
b. Approximately [tex]19.0\; {\rm m \cdot s^{-1}}[/tex].
Explanation:
Let [tex]m[/tex] denote the mass of this diver.
If the initial speed of the diver is [tex]v_{0}[/tex], the initial kinetic energy ([tex]\text{KE}[/tex]) of this diver would be [tex](1/2)\, m \, {v_{0}}^{2}[/tex].
If the height of this diver is [tex]h[/tex], the gravitational potential energy ([tex]\text{GPE}[/tex]) of this diver would be [tex]m\, g \, h[/tex].
The initial mechanical energy of this diver (sum of [tex]\text{KE}[/tex] and [tex]\text{GPE}[/tex]) would thus be: [tex](((1/2)\, m\, {v_{0}}^{2}) + (m\, g\, h}))[/tex].
If air resistance on the diver is negligible, the mechanical energy of this diver would stay the same until right before the diver impacts the water. The entirety of the initial mechanical energy, [tex](((1/2)\, m\, {v_{0}}^{2}) + (m\, g\, h}))[/tex], would be converted to kinetic energy by the time of impact.
Rearrange the equation [tex]\text{KE} = (1/2)\, m\, v^{2}[/tex] to find an expression for the speed of the diver:
[tex]\begin{aligned} v = \sqrt{\frac{2\, \text{KE}}{m}}\end{aligned}[/tex].
Thus, if the kinetic energy of the diver is [tex](((1/2)\, m\, {v_{0}}^{2}) + (m\, g\, h}))[/tex], the speed of the diver would be:
[tex]\begin{aligned} v &= \sqrt{\frac{2\, \text{KE}}{m}} \\ &= \sqrt{2\times \frac{(1/2)\, m\, {v_{0}}^{2} + (m\, g\, h)}{m}} \\ &= \sqrt{2 \times ((1/2)\, {v_{0}}^{2}) + (g\, h))} \\ &= \sqrt{{v_{0}}^{2} + 2\, g\, h}\end{aligned}[/tex].
Notice how [tex]m[/tex], the mass of the diver was eliminated from the expression.
If the diver started with no initial speed ([tex]v_{0} = 0\; {\rm m\cdot s^{-1}}[/tex]) at a height of [tex]h = 13\; {\rm m}[/tex], the speed of the diver right before impact with water would:
[tex]\begin{aligned} v &= \sqrt{{v_{0}}^{2} + 2\, g\, h} \\ &= \sqrt{{(0\; {\rm m\cdot s^{-1}})}^{2} + (2 \times 10\; {\rm m\cdot s^{-2} \times 13\; {\rm m})} \\ &\approx 16.1\; {\rm m\cdot s^{-1}}\end{aligned}[/tex].
If the diver started with an initial velocity of [tex]10\; {\rm m\cdot s^{-1}}[/tex] upwards (initial speed [tex]v_{0} = 10\; {\rm m\cdot s^{-1}}[/tex]) from a height of [tex]h = 13\; {\rm m}[/tex], the speed of the diver right before impact with water would be:
[tex]\begin{aligned} v &= \sqrt{{v_{0}}^{2} + 2\, g\, h} \\ &= \sqrt{{(10\; {\rm m\cdot s^{-1}})}^{2} + (2 \times 10\; {\rm m\cdot s^{-2} \times 13\; {\rm m})} \\ &\approx 19.0 \; {\rm m\cdot s^{-1}}\end{aligned}[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.