At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Find the angle, correct to two decimal places, that the lines joining the given points make with the positive direction of the x-axis:(3b,a), (3a,b)

Sagot :

The angle the line joining the given points make with the positive direction of the x-axis is 341.56°

The angle Ф between two points (x₁,y₁) and (x₂,y₂) is gotten from tanФ = (y₂ - y₁)/(x₂ - x₁).

Since (x₁, y₁) = (3b, a) and (x₂, y₂) = (3a, b)

Substituting the values of the variables into the equation, we have

tanФ = (y₂ - y₁)/(x₂ - x₁)

tanФ = (b - a)/(3a - 3b)

tanФ = -(a - b)/3(a - b)

tanФ = -1/3

taking inverse tan of both sides, we have

Φ = tan⁻¹(-1/3)

Φ = -tan⁻¹(1/3)

Φ = -18.43°

Converting to a positive angle, we have

Φ = -18.43° + 360°

Φ = 341.56°

So, the angle the line joining the given points make with the positive direction of the x-axis is 341.56°

Learn more about angle between two points here:

https://brainly.com/question/25731151