Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Using integrals, it is found that the particle travels 21.25 units between t = 0 and t = 5.
How is the total distance traveled calculated?
- The total distance traveled by a particle modeled by an equation of position s(t) between t = a and t = b is given by:
[tex]D = \int_{a}^{b} s(t) dt[/tex]
In this problem, the equation that models the position of the particle is:
[tex]s(t) = t^3 - 3t^2 - 2[/tex]
Hence, applying integral properties, then the Fundamental Theorem of Calculus, we have that the distance traveled is of:
[tex]D = \int_{a}^{b} s(t) dt[/tex]
[tex]D = \int_{0}^{5} (t^3 - 3t^2 - 2) dt[/tex]
[tex]D = \frac{t^4}{4} - t^3 - 2t|_{t = 0}^{t = 5}[/tex]
[tex]D = \left(\frac{5^4}{4} - 5^3 - 2(5)\right) - \left(\frac{0^4}{4} - 0^3 - 2(0)\right)[/tex]
[tex]D = 21.25[/tex]
The particle travels 21.25 units between t = 0 and t = 5.
You can learn more about integrals at https://brainly.com/question/20733870
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.