Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Using integrals, it is found that the particle travels 21.25 units between t = 0 and t = 5.
How is the total distance traveled calculated?
- The total distance traveled by a particle modeled by an equation of position s(t) between t = a and t = b is given by:
[tex]D = \int_{a}^{b} s(t) dt[/tex]
In this problem, the equation that models the position of the particle is:
[tex]s(t) = t^3 - 3t^2 - 2[/tex]
Hence, applying integral properties, then the Fundamental Theorem of Calculus, we have that the distance traveled is of:
[tex]D = \int_{a}^{b} s(t) dt[/tex]
[tex]D = \int_{0}^{5} (t^3 - 3t^2 - 2) dt[/tex]
[tex]D = \frac{t^4}{4} - t^3 - 2t|_{t = 0}^{t = 5}[/tex]
[tex]D = \left(\frac{5^4}{4} - 5^3 - 2(5)\right) - \left(\frac{0^4}{4} - 0^3 - 2(0)\right)[/tex]
[tex]D = 21.25[/tex]
The particle travels 21.25 units between t = 0 and t = 5.
You can learn more about integrals at https://brainly.com/question/20733870
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.