Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

5 Exam-style ABCD is a kite.
The coordinates of A are (−1, 3).
The equation of the diagonal BD is y = 3x − 1.
Find the equation of the diagonal AC.


Sagot :

let's recall that in a Kite the diagonals meet each other at 90° angles, Check the picture below, so we're looking for the equation of a line that's perpendicular to BD and that passes through (-1 , 3).

keeping in mind that perpendicular lines have negative reciprocal slopes, let's check for the slope of BD

[tex]y = \stackrel{\stackrel{m}{\downarrow }}{3}x-1\impliedby \begin{array}{|c|ll} \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array}[/tex]

[tex]\stackrel{\textit{perpendicular lines have \underline{negative reciprocal} slopes}} {\stackrel{slope}{3\implies \cfrac{3}{1}} ~\hfill \stackrel{reciprocal}{\cfrac{1}{3}} ~\hfill \stackrel{negative~reciprocal}{-\cfrac{1}{3}}}[/tex]

so we're really looking for the equation of a line whose slope is -1/3 and passes through point A

[tex](\stackrel{x_1}{-1}~,~\stackrel{y_1}{3})\qquad \qquad \stackrel{slope}{m}\implies -\cfrac{1}{3} \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{3}=\stackrel{m}{-\cfrac{1}{3}}[x-\stackrel{x_1}{(-1)}]\implies y-3=-\cfrac{1}{3}(x+1) \\\\\\ y-3=-\cfrac{1}{3}x-\cfrac{1}{3}\implies y=-\cfrac{1}{3}x-\cfrac{1}{3}+3\implies y=-\cfrac{1}{3}x+\cfrac{8}{3}[/tex]

View image jdoe0001
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.