Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
[tex]2cos^2x-5cos+2=0\\\\cosx=t\in < -1;\ 1 >\\\\2t^2-5t+2=0\\\\a=2;\ b=-5;\ c=2\\\\\Delta=b^2-4ac;\ \Delta=(-5)^2-4\cdot2\cdot2=25-16=9\\\\t_1=\frac{-b-\sqrt\Delta}{2a};\ t_2=\frac{-b+\sqrt\Delta}{2a}\\\\t_1=\frac{5-\sqrt9}{2\cdot2}=\frac{5-3}{4}=\frac{2}{4}=\frac{1}{2}\in < -1;\ 1 >\\\\t_2=\frac{5+\sqrt9}{2\cdot2}=\frac{5+3}{4}=\frac{8}{4}=2\notin < -1;\ 1 >[/tex]
[tex]cosx=\frac{1}{2}\to x=\frac{\pi}{3}+2k\pi\ \vee\ x=-\frac{\pi}{3}+2k\pi\ \ \ (k\in\mathbb{Z})[/tex]
[tex]cosx=\frac{1}{2}\to x=\frac{\pi}{3}+2k\pi\ \vee\ x=-\frac{\pi}{3}+2k\pi\ \ \ (k\in\mathbb{Z})[/tex]
Answer:
[tex] x = \frac{\pi}{3} + 2n\pi \\ or\\ x=\frac{-\pi}{3} + 2n\pi [/tex]
where "n" is an integer that belongs to Z.
Explanation:
The equation given is:
2cos²(x) - 5cos(x) + 2 = 0
To factor this equation, we will use the quadratic formula shown in the attached image.
From the given equation:
a = 2
b = -5
c = 2
This means that:
either cos(x) = [tex] \frac{5+\sqrt{(-5)^2-4(2)(2)}}{2(2)} = 2 [/tex] .......> This solution is rejected as the value of the cosine function lies between -1 and 1 only.
or cos(x) = [tex] \frac{5-\sqrt{(-5)^2-4(2)(2)}}{2(2)} = 0.5 [/tex] ......> This solution is accepted as it lies within -1 and 1
Now, using the inverse of the cosine, we can find that:
[tex] x = \frac{\pi}{3} + 2n\pi \\ or\\ x=\frac{-\pi}{3} + 2n\pi [/tex]
where "n" is an integer that belongs to Z.
Hope this helps :)

Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.