Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
[tex]2cos^2x-5cos+2=0\\\\cosx=t\in < -1;\ 1 >\\\\2t^2-5t+2=0\\\\a=2;\ b=-5;\ c=2\\\\\Delta=b^2-4ac;\ \Delta=(-5)^2-4\cdot2\cdot2=25-16=9\\\\t_1=\frac{-b-\sqrt\Delta}{2a};\ t_2=\frac{-b+\sqrt\Delta}{2a}\\\\t_1=\frac{5-\sqrt9}{2\cdot2}=\frac{5-3}{4}=\frac{2}{4}=\frac{1}{2}\in < -1;\ 1 >\\\\t_2=\frac{5+\sqrt9}{2\cdot2}=\frac{5+3}{4}=\frac{8}{4}=2\notin < -1;\ 1 >[/tex]
[tex]cosx=\frac{1}{2}\to x=\frac{\pi}{3}+2k\pi\ \vee\ x=-\frac{\pi}{3}+2k\pi\ \ \ (k\in\mathbb{Z})[/tex]
[tex]cosx=\frac{1}{2}\to x=\frac{\pi}{3}+2k\pi\ \vee\ x=-\frac{\pi}{3}+2k\pi\ \ \ (k\in\mathbb{Z})[/tex]
Answer:
[tex] x = \frac{\pi}{3} + 2n\pi \\ or\\ x=\frac{-\pi}{3} + 2n\pi [/tex]
where "n" is an integer that belongs to Z.
Explanation:
The equation given is:
2cos²(x) - 5cos(x) + 2 = 0
To factor this equation, we will use the quadratic formula shown in the attached image.
From the given equation:
a = 2
b = -5
c = 2
This means that:
either cos(x) = [tex] \frac{5+\sqrt{(-5)^2-4(2)(2)}}{2(2)} = 2 [/tex] .......> This solution is rejected as the value of the cosine function lies between -1 and 1 only.
or cos(x) = [tex] \frac{5-\sqrt{(-5)^2-4(2)(2)}}{2(2)} = 0.5 [/tex] ......> This solution is accepted as it lies within -1 and 1
Now, using the inverse of the cosine, we can find that:
[tex] x = \frac{\pi}{3} + 2n\pi \\ or\\ x=\frac{-\pi}{3} + 2n\pi [/tex]
where "n" is an integer that belongs to Z.
Hope this helps :)

Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.