At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

One day, a person went to a horse racing area. Instead of counting the number of humans an horses, he conuted 74 heads and 196 legs. How many humans and horses were there?
A.
37 humans and 98 horses
B.
24 horses and 50 humans
C.
31 horses and 74 humans
D.
24 humans and 50 horses


Sagot :

x = the number of humans and y = the number of horses.

x+y=74
2x+4y=196

Because the number of humans and horses together is 74, and the total number of legs (2 per every human, x, and 4 per every horse, y) is 196.  Then, just use elimination to solve.

[tex]-2(x+y=74)\\2x+4y=196\\\\-2x-2y=-148\\2x+4y=196\\\\2y=48\\y=24[/tex]

So, now that you have y, you can plug it into the first equation to find x:

[tex]x+y=74\\x+24=74\\x=50[/tex]

So, x = 50 and y = 24, so there are 50 humans and 24 horses.
The correct answer is B.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.