Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Check the picture below.
so by graphing those two, we get that little section in gray as you see there, now, x = 6 is a vertical line, so we'll have to put the equations in y-terms and this is a washer, so we'll use the washer method.
[tex]y=4x\implies \cfrac{y}{4}=x\qquad \qquad y=2\sqrt{x}\implies \cfrac{y^2}{4}=x~\hfill \begin{cases} \cfrac{y}{4}=x\\\\ \cfrac{y^2}{4}=x \end{cases}[/tex]
the way I get the radii is by using the "area under the curve" way, namely, I use it to get R² once and again to get r² and using each time the axis of rotation as one of my functions, in this case the axis of rotation will be f(x), and to get R² will use the "farthest from the axis of rotation" radius, and for r² the "closest to the axis of rotation".
[tex]\stackrel{R}{\stackrel{f(x)}{6}-\stackrel{g(x)}{\cfrac{y^2}{4}}}\qquad \qquad \stackrel{r}{\stackrel{f(x)}{6}-\stackrel{g(x)}{\cfrac{y}{4}}}~\hfill \stackrel{R^2}{\left( 6-\cfrac{y^2}{4} \right)^2}-\stackrel{r^2}{\left( 6-\cfrac{y}{4} \right)^2} \\\\\\ \stackrel{\textit{doing a binomial expansion and simplification}}{3y-3y^2-\cfrac{y^2}{16}+\cfrac{y^4}{16}}[/tex]
now, both lines if do an equation on where they meet or where one equals the other, we'd get the values for y = 0 and y = 1, not surprisingly in the picture.
[tex]\displaystyle\pi \int_0^1\left( 3y-3y^2-\cfrac{y^2}{16}+\cfrac{y^4}{16} \right)dy\implies \pi \left( \left. \cfrac{3y^2}{2} \right]_0^1-\left. y^3\cfrac{}{} \right]_0^1-\left. \cfrac{y^3}{48}\right]_0^1+\left. \cfrac{y^5}{80} \right]_0^1 \right) \\\\[-0.35em] ~\dotfill\\\\ ~\hfill \cfrac{59\pi }{120}~\hfill[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.