At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Using the normal distribution, it is found that there is a 0.6568 = 65.68% probability that the variable that is between −1.33 and 0.67.
Normal Probability Distribution
In a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
- It measures how many standard deviations the measure is from the mean.
- After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.
In this problem, we have a standard normal distribution, hence [tex]\mu = 0, \sigma = 1[/tex].
The probability that the variable is between −1.33 and 0.67 is the p-value of Z when X = 0.67 subtracted by the p-value of Z when X = -1.33, hence:
X = 0.67
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{0.67 - 0}{1}[/tex]
[tex]Z = 0.67[/tex]
[tex]Z = 0.67[/tex] has a p-value of 0.7486.
X = -1.33
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{-1.33 - 0}{1}[/tex]
[tex]Z = -1.33[/tex]
[tex]Z = -1.33[/tex] has a p-value of 0.0918.
0.7486 - 0.0918 = 0.6568.
0.6568 = 65.68% probability the variable that is between −1.33 and 0.67.
You can learn more about the normal distribution at https://brainly.com/question/24663213
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.