Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

What is 6[cos(70°) i sin(70°)] ÷ 2[cos(5°) i sin(5°)]? 3[cos(75°) i sin(75°)] 4[cos(75°) i sin(75°)] 3[cos(65°) i sin(65°)] 4[cos(65°) i sin(65°)].

Sagot :

Step-by-step explanation:

If we have

[tex] \frac{r( \cos(x) + i \sin(x) }{s( \cos(v) + i \: sin(w)} = \frac{r}{s} ( \cos(x - v) + i \: sin(x - w)[/tex]

So first we know the modulus is 6 and 2 for the second one so we get

[tex] \frac{6}{2} = 3[/tex]

First degree is 70 , and second is 5 so our degree will be 65 in the second because

70-5=65

Our answer is

[tex]3( \cos(65) + i \: \sin(65) )[/tex]

Answer:c.

Step-by-step explanation: