Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Answer:
see explanation
Step-by-step explanation:
The nth term of an arithmetic progression is
[tex]a_{n}[/tex] = a₁ + (n - 1)d
where a₁ is the first term and d the common difference
Given a₈ = - 10 , then
a₁ + 7d = - 10 → (1)
The sum of the first n terms of an arithmetic progression is
[tex]S_{n}[/tex] = [tex]\frac{n}{2}[/tex] [ 2a₁ + (n - 1)d ]
Given
[tex]S_{20}[/tex] = - 350 , then
[tex]\frac{20}{2}[/tex] [ 2a₁ + 19d ] = - 350
10(2a₁ + 19d) = - 350
20a₁ + 190d = - 350 → (2)
Multiply (1) by - 20
- 20a₁ - 140d = 200 → (3)
add (2) and (3) term by term to eliminate a₁
0 + 50d = - 150
50d = - 150 ( divide both sides by 50 )
d = - 3
substitute d = - 3 into (1)
a₁ + 7(- 3) = - 10
a₁ - 21 = - 10 ( add 21 to both sides )
a₁ = 11
Then first term a₁ = 11 and common difference d = - 3
(b)
a₁ + (n - 1)d = - 97 , that is
11 - 3(n - 1) = - 97 ( subtract 11 from both sides )
- 3(n - 1) = - 108 ( divide both sides by - 3 )
n - 1 = 36 ( add 1 to both sides )
n = 37
That is the 37th term = - 97
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.