At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

[tex]\lfloor\dfrac{x^2+1}{10}\rfloor+\lfloor\dfrac{10}{x^2+1}\rfloor=1[/tex]
[tex]\small\textrm{$\bullet\ \lfloor ()\rfloor$ denotes the greatest integer that does not exceed the number}[/tex]​


Sagot :

Answer:

  • See below

Step-by-step explanation:

This equation is solved if one of the following 2 conditions is met

1.

  • (x² + 1) / 10 is between 1 and 2

and

  • 10 / (x² + 1)  is between 0 and 1

Solve this:

  • 1 < (x² + 1) / 10 < 2
  • 10 < x² + 1 < 20
  • 9 < x² < 19
  • 3 < |x| < √19
  • x ∈ (- √19, - 3) ∪ (3, √19)
  • 0 < 10 / (x² + 1) < 1
  • x² + 1 > 10
  • x² > 9
  • |x| > 3

Solution for this case is x ∈ (- √19, - 3) ∪ (3, √19)

2.

  • (x² + 1) / 10 is between 0 and 1

and

  • 10 / (x² + 1)  is between 1 and 2

Solve this:

  • 0 < (x² + 1) / 10 < 1
  • 0 < x² + 1 < 10
  • - 1 < x² < 9
  • 0 ≤ |x| < 3
  • x ∈ ( - 3, 3)
  • 1 < 10 / (x² + 1) < 2
  • x² + 1 < 10 ⇒ x² < 9 ⇒ |x| < 3
  • x² + 1 > 5 ⇒ x² > 5 ⇒ |x| > √5

Solution for this case is x ∈ (- 3, - √5) ∪ (√5, 3)

Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.