Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

What is the energy of a photon of infrared radiation with a frequency of 2. 53 × 1012 Hz? Planck’s constant is 6. 63 × 10–34 J • s. 1. 68 × 1023 J 1. 68 × 1047 J 1. 68 × 10–21 J 1. 68 × 10–45 J.

Sagot :

The energy of the IR photon is [tex]\rm 1.68\;\times\;10^{-21}[/tex] J. Thus, option C is correct.

The energy of the radiations propagating in the air with the velocity of [tex]\rm 3\;\times\;10^8[/tex] m/s is given by:

[tex]E=h\nu[/tex]

Where, h is Planck's constant, and [tex]\nu[/tex] is the frequency.

Computation for the energy of IR photon

The value of Planck's constant is given as, [tex]\rm 6.63\;\times\;10^{-34}\;J.s^-^1[/tex]

The frequency of the IR radiation is [tex]\rm 2.53\;\times\;10^1^2\;Hz[/tex]

Substitute the values for the energy of the photon

[tex]\rm E=6.63\;\times\;10^{-34}\;J.s^{-1}\;\times\;2.53\;\times\;10^{12}\;Hz\\ E=16.8\;\times\;10^{-22}\;J\\E=1.68\;\times\;10^{-21}\;J[/tex]

The energy of the IR photon is [tex]\rm 1.68\;\times\;10^{-21}[/tex] J. Thus, option C is correct.

Learn more about the energy of photons, here:
https://brainly.com/question/15870724