Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
The energy of the IR photon is [tex]\rm 1.68\;\times\;10^{-21}[/tex] J. Thus, option C is correct.
The energy of the radiations propagating in the air with the velocity of [tex]\rm 3\;\times\;10^8[/tex] m/s is given by:
[tex]E=h\nu[/tex]
Where, h is Planck's constant, and [tex]\nu[/tex] is the frequency.
Computation for the energy of IR photon
The value of Planck's constant is given as, [tex]\rm 6.63\;\times\;10^{-34}\;J.s^-^1[/tex]
The frequency of the IR radiation is [tex]\rm 2.53\;\times\;10^1^2\;Hz[/tex]
Substitute the values for the energy of the photon
[tex]\rm E=6.63\;\times\;10^{-34}\;J.s^{-1}\;\times\;2.53\;\times\;10^{12}\;Hz\\ E=16.8\;\times\;10^{-22}\;J\\E=1.68\;\times\;10^{-21}\;J[/tex]
The energy of the IR photon is [tex]\rm 1.68\;\times\;10^{-21}[/tex] J. Thus, option C is correct.
Learn more about the energy of photons, here:
https://brainly.com/question/15870724
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.