At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

What is the energy of a photon of infrared radiation with a frequency of 2. 53 × 1012 Hz? Planck’s constant is 6. 63 × 10–34 J • s. 1. 68 × 1023 J 1. 68 × 1047 J 1. 68 × 10–21 J 1. 68 × 10–45 J.

Sagot :

The energy of the IR photon is [tex]\rm 1.68\;\times\;10^{-21}[/tex] J. Thus, option C is correct.

The energy of the radiations propagating in the air with the velocity of [tex]\rm 3\;\times\;10^8[/tex] m/s is given by:

[tex]E=h\nu[/tex]

Where, h is Planck's constant, and [tex]\nu[/tex] is the frequency.

Computation for the energy of IR photon

The value of Planck's constant is given as, [tex]\rm 6.63\;\times\;10^{-34}\;J.s^-^1[/tex]

The frequency of the IR radiation is [tex]\rm 2.53\;\times\;10^1^2\;Hz[/tex]

Substitute the values for the energy of the photon

[tex]\rm E=6.63\;\times\;10^{-34}\;J.s^{-1}\;\times\;2.53\;\times\;10^{12}\;Hz\\ E=16.8\;\times\;10^{-22}\;J\\E=1.68\;\times\;10^{-21}\;J[/tex]

The energy of the IR photon is [tex]\rm 1.68\;\times\;10^{-21}[/tex] J. Thus, option C is correct.

Learn more about the energy of photons, here:
https://brainly.com/question/15870724

We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.