Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
The depth of the swimming pool that is filled to the top is; 4 m
Snell's Law
I have attached a schematic diagram showing this question.
The correct width of the pool is 4 meters. Thus; w = 4 m
Incident Angle; θ₁ = 20°
A right angle is 90° and so the angle θ₂ is calculated from;
θ₂ = 90° - θ₁
θ₂ = 90° - 20°
θ₂ = 70°
We can use snell's law formula to find θ₃.
Thus;
n₁sinθ₂ = n₂sinθ₃
where;
n₁ is refractive index of air = 1
n₂ is refractive index of water = 1.33
Thus;
1*sin 70 = 1.33*sin θ₃
sin θ₃ = (sin 70)/1.33
Solving this gives;
θ₃ = 44.95°
By usage of trigonometric ratios we can find the depth of the pool using;
w/d = tan θ₃
Thus;
d = w/(tan θ₃)
d = 4/(tan 44.95)
d ≈ 4 m
Read more about Snell's Law at; https://brainly.com/question/10112549
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.