Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Answer:
- n = 11
Step-by-step explanation:
We can observe general terms of n:
- aₙ = n + 1 + 2n + 2 + 3n + 3 + ... + (n - 1)n + (n - 1)
Rewrite it as:
- aₙ = (n + 1) + 2(n + 1) + 3(n + 1) + ... (n - 1)(n + 1) =
- (n + 1)(1 + 2 + 3 + ... + n - 1) =
- (n + 1)(1 + n - 1)(n - 1)/2 =
- (n - 1)n(n + 1)/2
We need to find the least n for which aₙ > 500:
- (n - 1)n(n + 1)/2 > 500 ⇒ (n - 1)n(n + 1) > 1000
If n = 10:
- a₁₀ = 9*10*11 = 990 < 1000
If n = 11:
- a₁₁ = 10*11*12 = 1320 > 1000
So the least n is 11
If I'm understanding the construction of this sequence correctly, we have
• a₁ = 0
(the sum is empty since there is no positive integer b such that b•1 + b = 1)
• a₂ = 3
(since 3 = 1•2 + 1)
• a₃ = 4 + 8 = 12
(since 4 = 1•3 + 1 and 8 = 2•3 + 2)
• a₄ = 5 + 10 + 15 = 30
(since 5 = 1•4 + 1, 10 = 2•4 + 2, and 15 = 3•4 + 3)
and so on.
Notice that for n ≥ 2, aₙ is simply the sum of the first n - 1 multiples of n + 1. So
[tex]\displaystyle a_n = \sum_{i = 1}^{n - 1} (n+1)i[/tex]
Recall that
[tex]\displaystyle \sum_{i=1}^n i = \frac{n(n+1)}2[/tex]
Then
[tex]\displaystyle a_n = (n+1) \sum_{i=1}^{n-1} i = (n+1) \cdot \frac{(n-1)n}2 = \frac{n(n^2-1)}2[/tex]
Solve for n such that aₙ > 500 :
n (n² - 1)/2 > 500
n (n² - 1) > 1000
n³ - n > 1000
We can solve this by inspection. Noticing that 10³ = 1000, if we replace n = 10 we get
10³ - 10 = 990 > 1000
which is false, but the difference is quite small. So we move up to n = 11 and find
11³ - 11 = 1320 > 1000
which is true, so n = 11 is the least number such that aₙ > 500.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.