Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Answer:
- n = 11
Step-by-step explanation:
We can observe general terms of n:
- aₙ = n + 1 + 2n + 2 + 3n + 3 + ... + (n - 1)n + (n - 1)
Rewrite it as:
- aₙ = (n + 1) + 2(n + 1) + 3(n + 1) + ... (n - 1)(n + 1) =
- (n + 1)(1 + 2 + 3 + ... + n - 1) =
- (n + 1)(1 + n - 1)(n - 1)/2 =
- (n - 1)n(n + 1)/2
We need to find the least n for which aₙ > 500:
- (n - 1)n(n + 1)/2 > 500 ⇒ (n - 1)n(n + 1) > 1000
If n = 10:
- a₁₀ = 9*10*11 = 990 < 1000
If n = 11:
- a₁₁ = 10*11*12 = 1320 > 1000
So the least n is 11
If I'm understanding the construction of this sequence correctly, we have
• a₁ = 0
(the sum is empty since there is no positive integer b such that b•1 + b = 1)
• a₂ = 3
(since 3 = 1•2 + 1)
• a₃ = 4 + 8 = 12
(since 4 = 1•3 + 1 and 8 = 2•3 + 2)
• a₄ = 5 + 10 + 15 = 30
(since 5 = 1•4 + 1, 10 = 2•4 + 2, and 15 = 3•4 + 3)
and so on.
Notice that for n ≥ 2, aₙ is simply the sum of the first n - 1 multiples of n + 1. So
[tex]\displaystyle a_n = \sum_{i = 1}^{n - 1} (n+1)i[/tex]
Recall that
[tex]\displaystyle \sum_{i=1}^n i = \frac{n(n+1)}2[/tex]
Then
[tex]\displaystyle a_n = (n+1) \sum_{i=1}^{n-1} i = (n+1) \cdot \frac{(n-1)n}2 = \frac{n(n^2-1)}2[/tex]
Solve for n such that aₙ > 500 :
n (n² - 1)/2 > 500
n (n² - 1) > 1000
n³ - n > 1000
We can solve this by inspection. Noticing that 10³ = 1000, if we replace n = 10 we get
10³ - 10 = 990 > 1000
which is false, but the difference is quite small. So we move up to n = 11 and find
11³ - 11 = 1320 > 1000
which is true, so n = 11 is the least number such that aₙ > 500.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.