Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

2022-01-27
Suppose [tex]a_{n}[/tex] as the sum of the numbers in which the quotient and the remainder are equal when divided by [tex]n.[/tex] For example, [tex]a_{5}=6+12+18+24=60.[/tex] Find the least [tex]n[/tex] such that [tex]a_{n}\ \textgreater \ 500.[/tex]​

Sagot :

Answer:

  • n = 11

Step-by-step explanation:

We can observe general terms of n:

  • aₙ = n + 1 + 2n + 2 + 3n + 3 + ... + (n - 1)n + (n - 1)

Rewrite it as:

  • aₙ = (n + 1) + 2(n + 1) + 3(n + 1) + ... (n - 1)(n + 1) =
  •       (n + 1)(1 + 2 + 3 + ... + n - 1) =
  •       (n + 1)(1 + n - 1)(n - 1)/2 =
  •       (n - 1)n(n + 1)/2

We need to find the least n for which aₙ > 500:

  • (n - 1)n(n + 1)/2 > 500 ⇒ (n - 1)n(n + 1) > 1000

If n = 10:

  • a₁₀ = 9*10*11 = 990 < 1000

If n = 11:

  • a₁₁ = 10*11*12 = 1320 > 1000

So the least n is 11

If I'm understanding the construction of this sequence correctly, we have

• a₁ = 0

(the sum is empty since there is no positive integer b such that b•1 + b = 1)

• a₂ = 3

(since 3 = 1•2 + 1)

• a₃ = 4 + 8 = 12

(since 4 = 1•3 + 1 and 8 = 2•3 + 2)

• a₄ = 5 + 10 + 15 = 30

(since 5 = 1•4 + 1, 10 = 2•4 + 2, and 15 = 3•4 + 3)

and so on.

Notice that for n ≥ 2, aₙ is simply the sum of the first n - 1 multiples of n + 1. So

[tex]\displaystyle a_n = \sum_{i = 1}^{n - 1} (n+1)i[/tex]

Recall that

[tex]\displaystyle \sum_{i=1}^n i = \frac{n(n+1)}2[/tex]

Then

[tex]\displaystyle a_n = (n+1) \sum_{i=1}^{n-1} i = (n+1) \cdot \frac{(n-1)n}2 = \frac{n(n^2-1)}2[/tex]

Solve for n such that aₙ > 500 :

n (n² - 1)/2 > 500

n (n² - 1) > 1000

n³ - n > 1000

We can solve this by inspection. Noticing that 10³ = 1000, if we replace n = 10 we get

10³ - 10 = 990 > 1000

which is false, but the difference is quite small. So we move up to n = 11 and find

11³ - 11 = 1320 > 1000

which is true, so n = 11 is the least number such that aₙ > 500.