Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

if f(x) = 2x^3 + Ax^2 +4x -5 and f(2)=5, then what is the value of A?

Sagot :

Answer:

[tex]\dfrac{-7}{2}[/tex]

Step-by-step explanation:

Here we are given a polynomial ,

[tex]\implies f(x) = 2x^3 + Ax^2 + 4x - 5 [/tex]

And the value of ,

[tex]\implies f(2) = 5 \dots (i) [/tex]

And we need to find out the value of A . Firstly substitute x = 2 in f(x) , we have ,

[tex]\implies f(2) = 2(2)^3+ A(2)^2 + 4(2) -5 [/tex]

Simplify the exponents ,

[tex]\implies f(2) = 2(8) + A(4) + 8 - 5 [/tex]

Simplify by multiplying ,

[tex]\implies f(2) = 16 + 4A + 3 [/tex]

Add the constants ,

[tex]\implies f(2) = 19 + 4A [/tex]

Now from equation (i) , we have ,

[tex]\implies 19 + 4A = 5 [/tex]

Subtracting 19 both sides,

[tex]\implies 4A = 5-19 [/tex]

Simplify,

[tex]\implies 4A = -14[/tex]

Divide both sides by 4 ,

[tex]\implies A =\dfrac{-14}{4}=\boxed{ \dfrac{-7}{2}}[/tex]

Hence the value of A is -7/2.