Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Using the binomial distribution, it is found that there is a 0.9844 = 98.44% probability that bohan goes to café georgia for a coffee today.
For each friend, there are only two possible outcomes, either they go to the cafe, or they do not. The probability of a friend going to the cafe is independent of any other friend, hence, the binomial distribution is used to solve this question.
What is the binomial distribution formula?
The formula is:
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
In this problem:
- There are 3 friends, hence n = 3.
- They all go to the cafe with a 3/4 probability, hence p = 3/4 = 0.75.
The probability at least one goes is:
[tex]P(X \geq 1) = 1 - P(X = 0)[/tex]
In which:
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{3,0}.(0.75)^{0}.(0.25)^{3} = 0.0156[/tex]
Then:
[tex]P(X \geq 1) = 1 - P(X = 0) = 1 - 0.0156 = 0.9844[/tex]
0.9844 = 98.44% probability that bohan goes to café georgia for a coffee today.
You can learn more about the binomial distribution at https://brainly.com/question/24863377
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.