Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

If tan x = 3/4 and 0◦ ≤ x◦ ≤ 90◦, then cos x =?
Please explain the work behind the solution


Sagot :

Tanx = 3/4 = Y/X = opps/adj

sqrt(3^2+4^2) = 5 = hypotenuse

Cos is adj/hyp

Cosx = 4/5
[tex]tanx=\frac{3}{4}\\\\tanx=\frac{sinx}{cosx}\\\\\frac{sinx}{cosx}=\frac{3}{4}\to sinx=\frac{3}{4}cosx\ (*)\\\\\\sin^2x+cos^2x=1\\\\substitute\ (*)\\\\\left(\frac{3}{4}cosx\right)^2+cos^2x=1\\\\\frac{9}{16}cos^2x+cos^2x=1[/tex]

[tex]\frac{15}{16}cos^2x=1\ /\cdot\frac{16}{25}\\\\cos^2x=\frac{16}{25}\\\\cosx=\sqrt\frac{16}{25}\\\\cosx=\frac{4}{5}[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.