Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
The volume of the solid of revolution is approximately 37439.394 cubic units.
How to find the solid of revolution enclosed by two functions
Let be [tex]f(x) = e^{\frac{x}{6} }[/tex] and [tex]g(x) = e^{\frac{35}{6} }[/tex], whose points of intersection are [tex](x_{1},y_{1}) =(0,1)[/tex], [tex](x_{2}, y_{2}) = (35, e^{35/6})[/tex], respectively. The formula for the solid of revolution generated about the y-axis is:
[tex]V = \pi \int\limits^{e^{35/6}}_{1} {f(y)} \, dy[/tex] (1)
Now we proceed to solve the integral: [tex]f(y) = 6\cdot \ln y[/tex]
[tex]V = \pi \int\limits^{e^{35/6}}_{1} {6\cdot \ln y} \, dy[/tex] (2)
[tex]V = 6\pi \int\limits^{e^{35/6}}_{1} {\ln y} \, dy[/tex]
[tex]V = 6\pi \left[(y-1)\cdot \ln y\right]\right|_{1}^{e^{35/6}}[/tex]
[tex]V = 6\pi \cdot \left[(e^{35/6}-1)\cdot \left(\frac{35}{6} \right)-(1-1)\cdot 0\right][/tex]
[tex]V = 35\pi\cdot (e^{35/6}-1)[/tex]
[tex]V \approx 37439.392[/tex]
The volume of the solid of revolution is approximately 37439.394 cubic units. [tex]\blacksquare[/tex]
To learn more on solids of revolution, we kindly invite to check this verified question: https://brainly.com/question/338504
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.