Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Given points A (0,0), B (4,0), C (0,2), D (0,0), E (2,0), and F (0,1), which of the following proves that
A ABC - A DEF?


Sagot :

Similar triangles may or may not have equal side lengths

Triangles ABC and DEF are similar by SSS theorem

How to determine the similarity statement

The coordinates of the two triangles are:

A (0,0), B (4,0), C (0,2), D (0,0), E (2,0), and F (0,1)

Calculate the lengths of both triangles using the following distance formula

[tex]d = \sqrt{(x_2 -x_1)^2 + (y_2 -y_1)^2}[/tex]

For triangle ABC, we have:

[tex]AB = \sqrt{(0 -4)^2 + (0 -0)^2} = 4[/tex]

[tex]BC = \sqrt{(4 -0)^2 + (0 -2)^2} = 2\sqrt 5[/tex]

[tex]CA = \sqrt{(0 -0)^2 + (0 -2)^2} = 2[/tex]

For triangle DEF, we have:

[tex]DE = \sqrt{(0 -2)^2 + (0 -0)^2} = 2[/tex]

[tex]EF = \sqrt{(2 -0)^2 + (0 -1)^2} = \sqrt 5[/tex]

[tex]FD = \sqrt{(0 -0)^2 + (1 -0)^2} = 1[/tex]

Divide corresponding sides of the triangles to calculate the scale factor k

[tex]k = \frac{AB}{DE} = \frac{BC}{EF} = \frac{CA}{FD}[/tex]

This gives

[tex]k = \frac{4}{2} = \frac{2\sqrt 5}{\sqrt 5} = \frac{2}{1}[/tex]

Evaluate the quotients

[tex]k = 2 = 2 = 2[/tex]

Since the quotients are equal, then the triangles are similar

Hence, triangles ABC and DEF are similar by SSS theorem

Read more about similar triangles at:

https://brainly.com/question/14285697