Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
A person invests 6000 dollars in a bank. The bank pays 6.25% interest compounded monthly. The person leaves the money in the bank until it reaches 8800 dollars for 6.1 years.
How does compounding work?
Suppose that the initial amount of something is P.
Let after one unit of time, it increases by R% (per unit time) and compounds on the resultant total of that quantity, then, after T such units of time, then the quantity would increase to:
[tex]A = P(1 + \dfrac{R}{100})^T[/tex]
A person invests 6000 dollars in a bank. The bank pays 6.25% interest compounded monthly.
Given that :
Principal = 6000
Interest (r) = 6.25% compounded annually
Calculate time, t, if final amount A = 8800
Using the compound interest formula
[tex]A = P(1 + \dfrac{R}{100})^T[/tex]
A = final amount
n = number of times interest is applied per period
[tex]8800 = 6000(1 + {0.0625})^{t}[/tex]
[tex]8800 = 6000(1 + {0.0625})^{t}\\\\\\8800 = 6000({1.0625})^{t}\\\\\\\dfrac{8800} {6000}=({1.0625})^{t}\\\\\\1.46 =({1.0625})^{t}[/tex]
Take the log of both sides
[tex]log 1.46 = t log 1.0675\\\\0.1643 = 0.0263289t\\\\t = 6.1[/tex]
Learn more about compound interest here:
https://brainly.com/question/1329401
#SPJ2
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.