Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Using the z-distribution, it is found that the smallest sample size required to obtain the desired margin of error is of 4330.
What is a confidence interval of proportions?
A confidence interval of proportions is given by:
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which:
- [tex]\pi[/tex] is the sample proportion.
- z is the critical value.
- n is the sample size.
The margin of error is given by:
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In this problem:
- The estimate of the proportion is of [tex]\pi = 0.8[/tex].
- The desired margin of error is of M = 0.01.
- 90% confidence level, hence[tex]\alpha = 0.9[/tex], z is the value of Z that has a p-value of [tex]\frac{1+0.9}{2} = 0.95[/tex], so [tex]z = 1.645[/tex].
Then, we solve for n to find the minimum sample size.
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
[tex]0.01 = 1.645\sqrt{\frac{0.8(0.2)}{n}}[/tex]
[tex]0.01\sqrt{n} = 1.645\sqrt{0.8(0.2)}[/tex]
[tex]\sqrt{n} = \frac{1.645\sqrt{0.8(0.2)}}{0.01}[/tex]
[tex](\sqrt{n})^2 = \left(\frac{1.645\sqrt{0.8(0.2)}}{0.01}\right)^2[/tex]
[tex]n = 4329.6[/tex]
Rounding up, the smallest sample size required to obtain the desired margin of error is of 4330.
To learn more about the z-distribution, you can take a look at https://brainly.com/question/12517818
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.