Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Please help me with this problem. NO LINKS!!!

a. x about 31/8
b. x about 29/8
c. x about 57/16
d. x about 61/16​


Please Help Me With This Problem NO LINKSa X About 318b X About 298c X About 5716d X About 6116 class=

Sagot :

Answer:

  c. x about 57/16

Step-by-step explanation:

You have not specified the algorithm you use for one iteration. We will define it as follows:

The starting point is a pair of numbers that are upper and lower bounds on the solution. The iteration ends when a new value replaces one of these bounds. The final estimate of the root will be the average of the latest upper and lower bounds.

__

The given graph shows suitable initial bounds are 3 and 4. The sign of h(x) = f(x)-g(x) matches the sign of h(3) when x=7/2, so the value 7/2 will replace the lower bound at the end of iteration 1.

The new average of upper and lower bounds is (7/2 +4)/2 = 15/4. The sign of h(15/4) matches the sign of h(4), so 15/4 becomes the new upper bound at the end of iteration 2.

The new average of the bounds is (7/2 +15/4)/2 = 29/8. The sign of h(29/8) matches the sign of h(15/4), so 29/8 becomes the new upper bound at the end of iteration 3.

After 3 iterations, the bounds are 7/2 and 29/8. The average of these values is the approximate solution to the equation:

  x = (7/2 +29/8)/2 = 57/16

_____

Additional comment

We have tried to be clear about what we consider to be one iteration, and how a root approximation is arrived at. The definition of these things provided by your curriculum materials may be different.

View image sqdancefan
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.