Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Find the standard deviation of the data set (36, 18, 12, 10, 9). Round all calculations to the nearest tenth. Please Help!!!!​

Sagot :

Answer:

The standard deviation of the data set is [tex]\sigma=10[/tex]

Step-by-step explanation:

The formula for standard deviation is [tex]\sigma=\sqrt{\frac{1}{N}\sum_{n=1}^{\infty}(x_i-\mu)^2 }[/tex] where you are basically taking the mean of the data set ([tex]\mu[/tex]), find the mean of the squared differences from the observed values and mean ([tex](x_i-\mu)^2[/tex]), and square root the result:

Mean:

[tex]\mu=\frac{36+18+12+10+9}{5}=\frac{85}{5}=17[/tex]

Average of squared differences (variance):

[tex]\frac{1}{N}\sum_{n=1}^{\infty}(x_i-\mu)^2=\frac{(36-17)^2+(18-17)^2+(12-17)^2+(10-17)^2+(9-17)^2}{5}=\frac{500}{5}=100[/tex]

Standard deviation:

[tex]\sigma=\sqrt{100}=10[/tex]

This means that the standard deviation of the data set is 10, which tells us that the values of the data set, on average, are separated by 10.