Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

PLEASE HELP ME WITH GEOMETRY WORK

PLEASE HELP ME WITH GEOMETRY WORK class=

Sagot :

Step-by-step explanation:

An exterior angle of a polygon is an angle outside a polygon formed by one of its sides and the extension of an adjacent side. As shown in the figure below, for example, illustrates the exterior angles (red) of a regular convex pentagon (5-sided polygon).

The exterior angle sum theorem states that if a polygon is convex, the sum of its exterior angle will always be 360°. Therefore, the magnitude of each exterior angle of a n-sided polygon can be evaluated using the formula

                                      [tex]\text{Exterior angle} \ = \ \displaystyle\frac{360}{n}[/tex].

Hence, for a convex 21 sided-polygon (henicosagon), each exterior angle will be

                                      [tex]\text{Exterior angle} \ = \ \displaystyle\frac{360^{\circ}}{n} \\ \\ \\ \-\hspace{2.3cm} = \displaystyle\frac{360^{\circ}}{21} \\ \\ \\ \-\hspace{2.3cm} = 17.14^{\circ} \ \ \ (\text{2 d.p.})[/tex].

which sum is

                               [tex]\text{Sum of exterior angles} \ = \ 17.14^{\circ} \ \times \ 21 \\ \\ \\ \-\hspace{3.59cm} = \ 360.0^{\circ}[/tex],

agrees with the theorem mentioned above.