Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Jackson's method to figure out the height of the mountain is from the
similar triangles formed by the light using the mirror.
Response:
- The height of the mountain is 50 feet 8 inches
Which methods can used to find the height of the mountain?
The given parameters are;
Distance of the mirror from Jackson = 5 feet
Distance of the mirror from the base of the mountain = 40 feet
Height of Jackson = 6'4'' tall
Required:
The approximate height of the mountain, h
Solution:
The triangles formed by the light from the top of the mountain which is
reflected to Jackson from the mirror, Jackson's height, the height of the
mountain, and their distances from the mirror, are similar triangles.
The ratio of corresponding sides of similar triangles are equal, therefore,
we have;
[tex]\dfrac{Jackson's \ height}{Jackson's \ distance \ from \ the \ mirror } =\mathbf{ \dfrac{Height \ of \ the \ mountain}{Distance \ of \ the \ mountain \ from \ the \ mirror}}[/tex]
Which gives;
[tex]\dfrac{6\frac{1}{3} \, ft.}{5 \, ft.} = \mathbf{ \dfrac{h}{40 \, ft.}}[/tex]
[tex]h = 480 \, in. \times \dfrac{76 \, in.}{60 \, in.} = 608 \, in. = \mathbf{50 \frac{2}{3} \, ft. = 50 \, feet \ 8 \, inches}[/tex]
- The height of the mountain is approximately 50 feet 8 inches
Learn more about similar triangles here:
https://brainly.com/question/23467926
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.