Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Check all the statements that are true:
A. If f:A→Bf:A→B is an injective function and A is finite, then B is finite as well and the cardinality of B is at most the cardinality of A.
B. If f:A→Bf:A→B is a surjective function and B is finite, then A is finite as well and the cardinality of A is at least the cardinality of B.
C. If f:A→Bf:A→B is a surjective function and B is finite, then A is finite as well and the cardinality of A is at most the cardinality of B.
D. If f:A→Bf:A→B is an injective function and A is finite, then B is finite as well and the cardinality of B is at least the cardinality of A.
E. None of the above


Sagot :

Answer: Choice E

====================================================

Explanation:

Each item A through D is false because one set may be infinite while the other is finite, or vice versa. One set being finite doesn't automatically make the other finite as well.

---------

Here's an example of why choice B is false.

A = set of nonzero real numbers

B = {-1, 1}

f(x) = |x|/x

This function is surjective because we target everything in the range B = {-1,1}. Positive x values map to 1, negative x values map to -1. Notice how set A is infinitely large, and B is finite.

The other answer choices can be ruled out through similar logic.

We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.