Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Using the hypergeometric distribution, it is found that there is a 0.1515 = 15.15% probability that you pick at least 3 green balls.
The balls are chosen without replacement, hence the hypergeometric distribution is used.
What is the hypergeometric distribution formula?
The formula is:
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}C_{N-k,n-x}}{C_{N,n}}[/tex]
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
The parameters are:
- x is the number of successes.
- N is the size of the population.
- n is the size of the sample.
- k is the total number of desired outcomes.
In this problem:
- There are 4 + 5 + 3 = 12 balls, hence N = 12.
- 5 of the balls are green, hence k = 5.
- 4 balls will be picked, hence n = 4.
The probability that you pick at least 3 green balls is:
[tex]P(X \geq 3) = P(X = 3) + P(X = 4)[/tex]
Hence:
[tex]P(X = 3) = h(3,12,4,5) = \frac{C_{5,3}C_{7,1}}{C_{12,4}} = 0.1414[/tex]
[tex]P(X = 4) = h(4,12,4,5) = \frac{C_{5,4}C_{7,0}}{C_{12,4}} = 0.0101[/tex]
Then:
[tex]P(X \geq 3) = P(X = 3) + P(X = 4) = 0.1414 + 0.0101 = 0.1515[/tex]
0.1515 = 15.15% probability that you pick at least 3 green balls.
You can learn more about the hypergeometric distribution at https://brainly.com/question/4818951
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.