Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

At time t=​0, a particle is located at the point ​(1​,1​,3​). It travels in a straight line to the point ​(5​,9​,4​), has speed 6 at ​(1​,1​,3​) and constant acceleration 4i+8j+k. Find an equation for the position vector r​(t) of the particle at time t.

Sagot :

Ignoring the malformed character, it looks like you're saying you have particle initially located at (1, 1, 3) that travels in a straight line to (5, 9, 4) with initial speed 6 and constant acceleration vector 4i + 8j + k.

Use the fundamental theorem of calculus to determine the velocity function for the particle:

[tex]\vec v(t) = \vec v(0) + \displaystyle \int_0^t \vec a(u) \, du[/tex]

The particle moves in the same direction as the vector

(5i + 9j + 4k) - (i + j + 3k) = 4i + 8j + k

which has magnitude

√(4² + 8² + 1²) = √81 = 9

Normalize the direction vector by dividing it by its magnitude:

(4i + 8j + k)/9 = 4/9 i + 8/9 j + 1/9 k

The particle has initial speed 6, so we must scale this unit vector by a factor of 1/6 to get the initial velocity vector:

6 (4/9 i + 8/9 j + 1/9 k) = 8/3 i + 16/3 j + 2/3 k

Solve for v(t) :

[tex]\vec v(t) = \dfrac83\vec\imath + \dfrac{16}3\vec\jmath + \dfrac23\vec k + \displaystyle \int_0^t \left(4\vec\imath + 8\vec\jmath+\vec k\right) \, du[/tex]

[tex]\vec v(t) = \dfrac83\vec\imath + \dfrac{16}3\vec\jmath + \dfrac23\vec k + \left(4t\,\vec\imath + 8t\,\vec\jmath+t\,\vec k\right)[/tex]

[tex]\vec v(t) = \left(\dfrac83+4t\right)\vec\imath + \left(\dfrac{16}3+8t\right)\vec\jmath + \left(\dfrac23+t\right)\vec k[/tex]

Use the fundamental theorem again to find the position vector r(t) :

[tex]\vec r(t) = \vec r(0) + \displaystyle \int_0^t \vec v(u) \, du[/tex]

[tex]\vec r(t) = \vec\imath+\vec\jmath+3\vec k + \displaystyle \int_0^t \left(\left(\dfrac83+4u\right)\vec\imath + \left(\dfrac{16}3+8u\right)\vec\jmath + \left(\dfrac23+u\right)\vec k\right) \, du[/tex]

[tex]\vec r(t) = \vec\imath+\vec\jmath+3\vec k + \left(\left(\dfrac83 t+2t^2\right)\vec\imath + \left(\dfrac{16}3t+4t^2\right)\vec\jmath + \left(\dfrac23t+\dfrac12t^2\right)\vec k\right)[/tex]

[tex]\vec r(t) = \left(1+\dfrac83 t+2t^2\right)\vec\imath + \left(1+\dfrac{16}3t+4t^2\right)\vec\jmath + \left(3+\dfrac23t+\dfrac12t^2\right)\vec k[/tex]