At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

At time t=​0, a particle is located at the point ​(1​,1​,3​). It travels in a straight line to the point ​(5​,9​,4​), has speed 6 at ​(1​,1​,3​) and constant acceleration 4i+8j+k. Find an equation for the position vector r​(t) of the particle at time t.

Sagot :

Ignoring the malformed character, it looks like you're saying you have particle initially located at (1, 1, 3) that travels in a straight line to (5, 9, 4) with initial speed 6 and constant acceleration vector 4i + 8j + k.

Use the fundamental theorem of calculus to determine the velocity function for the particle:

[tex]\vec v(t) = \vec v(0) + \displaystyle \int_0^t \vec a(u) \, du[/tex]

The particle moves in the same direction as the vector

(5i + 9j + 4k) - (i + j + 3k) = 4i + 8j + k

which has magnitude

√(4² + 8² + 1²) = √81 = 9

Normalize the direction vector by dividing it by its magnitude:

(4i + 8j + k)/9 = 4/9 i + 8/9 j + 1/9 k

The particle has initial speed 6, so we must scale this unit vector by a factor of 1/6 to get the initial velocity vector:

6 (4/9 i + 8/9 j + 1/9 k) = 8/3 i + 16/3 j + 2/3 k

Solve for v(t) :

[tex]\vec v(t) = \dfrac83\vec\imath + \dfrac{16}3\vec\jmath + \dfrac23\vec k + \displaystyle \int_0^t \left(4\vec\imath + 8\vec\jmath+\vec k\right) \, du[/tex]

[tex]\vec v(t) = \dfrac83\vec\imath + \dfrac{16}3\vec\jmath + \dfrac23\vec k + \left(4t\,\vec\imath + 8t\,\vec\jmath+t\,\vec k\right)[/tex]

[tex]\vec v(t) = \left(\dfrac83+4t\right)\vec\imath + \left(\dfrac{16}3+8t\right)\vec\jmath + \left(\dfrac23+t\right)\vec k[/tex]

Use the fundamental theorem again to find the position vector r(t) :

[tex]\vec r(t) = \vec r(0) + \displaystyle \int_0^t \vec v(u) \, du[/tex]

[tex]\vec r(t) = \vec\imath+\vec\jmath+3\vec k + \displaystyle \int_0^t \left(\left(\dfrac83+4u\right)\vec\imath + \left(\dfrac{16}3+8u\right)\vec\jmath + \left(\dfrac23+u\right)\vec k\right) \, du[/tex]

[tex]\vec r(t) = \vec\imath+\vec\jmath+3\vec k + \left(\left(\dfrac83 t+2t^2\right)\vec\imath + \left(\dfrac{16}3t+4t^2\right)\vec\jmath + \left(\dfrac23t+\dfrac12t^2\right)\vec k\right)[/tex]

[tex]\vec r(t) = \left(1+\dfrac83 t+2t^2\right)\vec\imath + \left(1+\dfrac{16}3t+4t^2\right)\vec\jmath + \left(3+\dfrac23t+\dfrac12t^2\right)\vec k[/tex]