At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
The speed at the intake is 199.89 cm/s
Since the volume flow rate, Q = Av is constant where
- A = cross-sectional area and
- v = flow speed,
We have that from the continuity equation,
Continuity equation
A₁v₁ = A₂v₂ where
- A₁ = cross-sectional area of intake = πd²/4 where
- d = diameter of intake = 20 cm,
- v₁ = speed of intake,
- A₂ = cross-sectional area of outlet = L² where
- L = length of side of outlet = 25.06 cm and
- v₂ = speed of outlet = 100 cm/s
So, A₁v₁ = A₂v₂
πd²v₁/4 = L²v₂
Speed at the intake
Making v₁ subject of the formula, we have
v₁ = 4L²v₂/πd²
So, substituting the values of the variables into the equation, we have
v₁ = 4L²v₂/πd²
v₁ = 4(25.06 cm)² × 100 cm/s/[π(20 cm)²]
v₁ = 4 × 628.0036 cm�� × 100 cm/s/[400π cm²]
v₁ = 2512.0144 cm² × 100 cm/s/1256.6371 cm²
v₁ = 1.9989 × 100 cm/s
v₁ = 199.89 cm/s
So, the speed at the intake is 199.89 cm/s
Learn more about flow speed here:
https://brainly.com/question/10822213
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.