Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Question:
What is the smallest integer [tex]$n$[/tex] such that [tex]$n\sqrt{2}$[/tex] is greater than [tex]$20$[/tex]? (Note: [tex]$n\sqrt{2}$[/tex] means [tex]$n$[/tex] times [tex]$\sqrt{2}$[/tex].)
Solution:
- n√2 > 20
- => n > 20/√2
- => n > 4 x 5/√2
- => n > 2 x 2 x 5/√2
- => n > √4 x √4 x √25/√2
- => n > √2 x √4 x √25
- => n > √2 x 4 x 25
- => n > 10√2
- => n > 14.14 (Rounded)
Smallest integer possibility for n is 15.
Hence, the smallest possible integer is 11.
Answer:
15
Step-by-step explanation:
In order to compare $n\sqrt{2}$ to $20$, we can compare the square of $n\sqrt{2}$ to the square of $20.$ We have
\begin{align*}
\left(n\sqrt{2}\right)^2 &= \left(n\sqrt{2}\right)\left(n\sqrt{2}\right) = n^2 \left(\sqrt{2}\right)^2 = n^2\cdot 2= 2n^2,\\
20^2 &= 400.
\end{align*}Therefore, we have $n\sqrt{2} > 20$ whenever $n^2 > 200.$ Since $14^2 = 196$ and $15^2 = 225,$ we know that $\boxed{15}$ is the smallest integer $n$ such that $n\sqrt{2}$ is greater than $20.$
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.