Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Answer:
See below
Step-by-step explanation:
Here we need to prove that ,
[tex]\sf\longrightarrow sin^2\theta + cos^2\theta = 1 [/tex]
Imagine a right angled triangle with one of its acute angle as [tex]\theta[/tex] .
- The side opposite to this angle will be perpendicular .
- Also we know that ,
[tex]\sf\longrightarrow sin\theta =\dfrac{p}{h} \\[/tex]
[tex]\sf\longrightarrow cos\theta =\dfrac{b}{h} [/tex]
And by Pythagoras theorem ,
[tex]\sf\longrightarrow h^2 = p^2+b^2 \dots (i) [/tex]
Where the symbols have their usual meaning.
Now , taking LHS ,
[tex]\sf\longrightarrow sin^2\theta +cos^2\theta [/tex]
- Substituting the respective values,
[tex]\sf\longrightarrow \bigg(\dfrac{p}{h}\bigg)^2+\bigg(\dfrac{b}{h}\bigg)^2\\[/tex]
[tex]\sf\longrightarrow \dfrac{p^2}{h^2}+\dfrac{b^2}{h^2}\\ [/tex]
[tex]\sf\longrightarrow \dfrac{p^2+b^2}{h^2} [/tex]
- From equation (i) ,
[tex]\sf\longrightarrow\cancel{ \dfrac{h^2}{h^2}}\\ [/tex]
[tex]\sf\longrightarrow \bf 1 = RHS [/tex]
Since LHS = RHS ,
Hence Proved !
I hope this helps.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.