Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
The opposite sides of the parallelogram are congruent given that the
opposite triangles formed by the diagonals are congruent.
Response:
- (Choice C) ΔABE and ΔCDE by angle-side-angle postulate.
How to prove that opposite sides of a parallelogram are congruent?
The vertices of the parallelogram in the question is; ABCD
The point of intersection of the diagonals AC and BD is the point E
By proving that ΔABE ≅ ΔCDE, we have;
∠BEA ≅ ∠CED by vertical angles theorem
∠EAB ≅ ∠ECD by alternate angles theorem
The diagonals of a parallelogram bisect each other, therefore;
[tex]\overline{AE}[/tex] = Â [tex]\mathbf{\overline{EC}}[/tex] Â
Therefore;
ΔABE ≅ ΔCDE by angle-side-angle, ASA, congruency rule;
Which gives;
[tex]\overline{AB}[/tex] ≅ [tex]\overline{CD}[/tex] by CPCTC
The correct choice is therefore;
- (Choice C) ΔABE and ΔCDE by angle-side-angle postulate
Learn more about the rules of congruency here:
https://brainly.com/question/12039641
https://brainly.com/question/17158967
Answer:
ABC and triangle CDA by angle-side-angle
Step-by-step explanation:
got it right on khan I would have taken a screen shot but i accidentally went ahead before i could
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.