Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Check down the image that’s give below

Check Down The Image Thats Give Below class=

Sagot :

Solution:

[tex] \frac{3x}{ {x}^{2} + 6x + 9} + \frac{x + 3}{ {x}^{2} - 9 } [/tex]

In the first fraction, we have to factorise the denominator using (a + b)² = a² + 2ab + b². And in the second fraction, we have to factorise the denominator using a² - b² = (a - b)(a + b) identity.

[tex] = \frac{3x}{ {(x)}^{2} + 2(x)(3) + ( {3)}^{2} } + \frac{x + 3}{(x)^{2} - (3)^{2} } \\ = \frac{3x}{(x + 3) ^{2} } + \frac{x + 3}{(x + 3)(x - 3)} [/tex]

From the second fraction, cancel out from both sides (x + 3), the we get:

[tex] = \frac{3x}{(x + 3) ^{2} } + \frac{1}{(x - 3)} \\ = \frac{3x(x - 3) + 1(x + 3) ^{2} }{(x + 3)^{2} (x - 3)} \\ = \frac{3x ^{2} - 9 x+ {x}^{2} + 6x + 9}{ {(x + 3)}^{2} (x - 3)} \\ = \frac{ {4x}^{2} - 3x + 9}{(x + 3)(x + 3)(x - 3)} [/tex]

Answer:

[tex]\frac{ {4x}^{2} - 3x + 9}{(x + 3)(x + 3)(x - 3)} [/tex]

Hope you could understand.

If you have any query, feel free to ask.

Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.